Abstract

In this work, physics-based recurrent neural network (RNN) modeling approaches are proposed for a general class of nonlinear dynamic process systems to improve prediction accuracy by incorporating a priori process knowledge. Specifically, a hybrid modeling method is first introduced to integrate first-principles models and RNN models. Subsequently, a partially-connected RNN modeling method that designs the RNN structure based on a priori structural process knowledge, and a weight-constrained RNN modeling method that employs weight constraints in the optimization problem of the RNN training process are developed. The proposed physics-based RNN models are utilized in model predictive controllers and applied to a chemical process network example to demonstrate their improved approximation performance compared to the fully-connected RNN model that is developed as a black box model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.