Abstract
The effects of combinations of dissimilar aluminum alloys during Friction stir welding (FSW) on the process response and resultant joint properties are experimentally investigated using two dissimilar automotive structural aluminum alloys. Depending on the materials on the advancing and retreating sides of the tool travel direction during FSW, four different material combinations are considered. FSW joints without macroscopic defects are successfully fabricated for the four different material combinations. The optical microscopy results show that the macroscopic material mixing behaviors of the two dissimilar material combinations during FSW are somewhat different from each other, even though the process responses during joining are not much different. The results of the quasi-static tensile tests and EBSD analysis demonstrate that the mechanical behaviors and orientation changes of the joint during tensile deformation are affected by the material locations with respect to the tool travel direction during FSW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.