Abstract

Additive friction stir deposition (AFSD) provides a solid-state approach to metal deposition that does not rely on local melting and solidification, but rather on kinetic energy and plastic flow. In this study, AFSD is combined with structured light scanning, turning, and milling to produce metal components while considering the unique requirements imposed by the hybrid manufacturing process sequences. Two demonstrations are presented which include: 1) a cylindrical build plate selection to enable coordinate system transfer between deposition and turning of a hollow cone; and 2) intermittent deposition-machining operations with structured light scanning to fabricate a two-sided hexagon-cylinder geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.