Abstract
The adsorptive capability of rice-husk for the sorption of thorium ions from aqueous solutions in batch mode was studied. The key process variables (initial metal ion concentration, initial solution pH and S/L (solid-to-liquid ratio) were optimized for achieving maximum bioremoval efficiency (B%) by employing the Box-Behnken design (33) in response surface methodology (RSM). A quadratic model developed by fitting the experimental data predicted 93% of the responses and estimated the local maximum of B% as >99% for an initial ThIV concentration of 150 g/L, S/L ratio of 5, and an initial pH of 4, and the reported biosorption capacity (qe) is 15.95 mg/g for the same conditions. Freundlich isotherm (R2 = 0.9841) and pseudo-first-order (R2 = 0.9416) kinetic models had the best concurrence with the experimental data in the thorium concentration range used implying the sorption mechanism involves surface biosorption and intraparticle diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.