Abstract

In this work, the properties of the CH4-CO2 reforming reaction over the Fe/SiC catalyst during the whole process were studied under microwave irradiation and the reaction process was analyzed by mass spectrometry and Fourier transfer infrared spectrometry in real time. The effects of microwave power on the gas composition, conversion of reactants, and selectivity of products in the reaction were investigated. It was found that the microwave dry reforming reaction can be divided into a rapid reaction stage, slow reaction stage, and reaction equilibrium stage. The conversion of reactants and selectivity of products in the slow reaction stage were both higher than 95% under 90 W/g. In the long-term (~50 h) stability test, a combination of SEM, XRD, BET, and TG analyses found that the catalyst activity did not reduce significantly and the amount of carbon deposits (which was mainly Cγ) was negligible (~0.78 wt%). The results indicate that the cheap Fe-based catalyst has good catalytic activity and stability under microwave irradiation and hence has a promising application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call