Abstract
Cost-effective zero valent iron (ZVI)-based bimetallic particles are a novel and promising technology for contaminant removal. The objective of this study was to evaluate the effectiveness of CCl4 removal from aqueous solution using microscale Ag/Fe bimetallic particles which were prepared by depositing Ag on millimeter-scale sponge ZVI particles. Kinetics of CCl4 degradation, the effect of Ag loading, the Ag/Fe dosage, initial solution pH, and humic acid on degradation efficiency were investigated. Ag deposited on ZVI promoted the CCl4 degradation efficiency and rate. The CCl4 degradation resulted from the indirect catalytic reduction of absorbed atomic hydrogen and the direct reduction on the ZVI surface. The CCl4 degradation by Ag/Fe particles was divided into slow reaction stage and accelerated reaction stage, and both stages were in accordance with the pseudo-first-order reaction kinetics. The degradation rate of CCl4 in the accelerated reaction stage was 2.29–5.57-fold faster than that in the slow reaction stage. The maximum degradation efficiency was obtained for 0.2 wt.% Ag loading. The degradation efficiency increased with increasing Ag/Fe dosage. The optimal pH for CCl4 degradation by Ag/Fe was about 6. The presence of humic acid had an adverse effect on CCl4 removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.