Abstract

Virus‐like particles (VLPs) have shown great potential as biopharmaceuticals in the market and in clinics. Nonenveloped, in vivo assembled VLPs are typically disassembled and reassembled in vitro to improve particle stability, homogeneity, and immunogenicity. At the industrial scale, cross‐flow filtration (CFF) is the method of choice for performing reassembly by diafiltration. Here, we developed an experimental CFF setup with an on‐line measurement loop for the implementation of process analytical technology (PAT). The measurement loop included an ultraviolet and visible (UV/Vis) spectrometer as well as a light scattering photometer. These sensors allowed for monitoring protein concentration, protein tertiary structure, and protein quaternary structure. The experimental setup was tested with three Hepatitis B core Antigen (HBcAg) variants. With each variant, three reassembly processes were performed at different transmembrane pressures (TMPs). While light scattering provided information on the assembly progress, UV/Vis allowed for monitoring the protein concentration and the rate of VLP assembly based on the microenvironment of Tyrosine‐132. VLP formation was verified by off‐line dynamic light scattering (DLS) and transmission electron microscopy (TEM). Furthermore, the experimental results provided evidence of aggregate‐related assembly inhibition and showed that off‐line size‐exclusion chromatography does not provide a complete picture of the particle content. Finally, a Partial‐Least Squares (PLS) model was calibrated to predict VLP concentrations in the process solution. Q2 values of 0.947–0.984 were reached for the three HBcAg variants. In summary, the proposed experimental setup provides a powerful platform for developing and monitoring VLP reassembly steps by CFF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.