Abstract

Rotating packed bed (RPB) absorber using monoethanolamine (MEA) as the solvent to capture CO2 is modelled at steady state condition in this study according to the first principles in gPROMS®. The effect of eight different kinetic reaction models and five enhancement factors is examined based on the newly developed model. Selection of kinetic model has a significant effect on the carbon capture level (CCL) but the effect of enhancement factor relation is not important. The steady state process model is validated against the experimental data and showed good agreement. The average absolute relative deviation for 12 case-runs is 3.5%. In addition, process analysis is performed to evaluate the effect of four factors namely rotor speed, MEA concentration in lean MEA solution, lean MEA solution temperature and lean MEA solution flow rate on CCL. Finally, the orthogonal array design (OAD) method is applied to analyse the simultaneous effect of the above-mentioned factors in the CCL and motor power of RPB absorber by considering 25 scenarios. The result of using OAD revealed that rotor speed has the most important effect on CCL, and after that lean MEA solution flow rate has the second importance. In addition, the OAD method is used to find the proper combination of four factors that resulted in about 90% CCL with low motor power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.