Abstract

Abstract Alumina (Al2O3) based porous composites, reinforced with zirconia (ZrO2), 3 and 8 mol% Y2O3 stabilized ZrO2 (YSZ) and 4 wt% carbon nanotube (CNT) are processed via spark plasma sintering. The normalized linear shrinkage during sintering process of Al2O3-based composite shows minimum value (19.2–20.4%) for CNT reinforced composites at the temperature between 1650 °C and 575 °C. Further, the combined effect of porosity, phase-content and its crystallite size in sintered Al2O3-based porous composite have elicited lowest thermal conductivity of 1.2 Wm−1K−1 (Al2O3-8YSZ composite) at 900 °C. Despite high thermal conductivity of CNT (∼3000 Wm−1K−1), only a marginal thermal conductivity increase (∼1.4 times) to 7.3–13.4 Wm−1K−1 was observed for CNT reinforced composite along the longitudinal direction at 25 °C. The conventional models overestimated the thermal conductivity of CNT reinforced composites by up to ∼6.7 times, which include the crystallite size, porosity, and interfacial thermal resistance of Al2O3, YSZ and, CNT. But, incorporation of a new process induced CNT-alignment factor, the estimated thermal conductivity (of

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call