Abstract

Additive manufacturing by selective electron beam melting (SEBM) was used to fabricate pure copper specimens. A process window at process temperature of 530 °C, gives the required beam powers and deflection speeds for manufacturing dense specimens (>99.5%). The microstructure of SEBM specimens was analyzed by using optical and scanning electron microscopy (SEM). Electrical conductivity, thermal conductivity, hardness, and mechanical performance were investigated by using eddy current, laser flash analysis, Vickers hardness and tensile tests, respectively. It was found that the variation of beam power and scan speed results in different microstructures from columnar to nearly equiaxed grain. The electrical conductivity of SEBM-processed specimens was above 58 MS/m (>100 IACS) while their hardness was around 55 HV0.05 and 46 HV5 without any dependency on processing parameters within the process window. The tensile tests revealed how vertical cracks affect the mechanical strength under tensile loading condition. The results of this study not only show a reliable process window but also introduce the links between processing parameters, defect formations, conductivity and mechanical strength of pure copper specimens manufactured by SEBM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.