Abstract

Xylitol, a commodity chemical, is widely used in nutraceutical and pharmaceutical formulations. Microbial xylitol production is a promising alternative to mitigate current industrial practice issues and offers an environment-friendly sustainable conversion route. This study demonstrates a bioprocess for xylitol production from corncob using a mesophilic yeast Pichia caribbica. Corncob was hydrolyzed by dilute acid and steam explosion to recover fermentable xylose and used as the feed for xylitol production. Activated carbon treatment (3% w/v) completely removed the biomass-derived inhibitors furfural and hydroxymethyl furfural from the liquid hydrolysate. The fermenting yeast Pichia caribbica produced 124.1 ± 0.45 g/L xylitol from the detoxified and concentrated corncob hydrolysate with a high yield of 0.80 ± 0.02 g/g. The crystallized xylitol with 96.5% purity demonstrated no harmful effects on the cell line used as a control for the in-vitro toxicity studies. This proof of concept can be applied to help scale up for bio-refinery-based large-scale production of xylitol from corncob biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call