Abstract

Abstract Finite state Markov Decision Processes (MDP) for process control are considered. MDP provide robust tools to perform optimization in closed-loop, and their finite state description enables an easy implementation of Bayesian state estimation. An approach to tackle the curse of dimensionality problem, yet retaining the benefits of the finite state MDP in control and estimator design, is proposed. The suggested approach uses iterative re-discretization based on clustering of closed-loop data. An efficient modification of the k-means clustering technique is proposed. The performance of the approach is demonstrated using a challenging benchmark from chemical engineering, the van der Vusse continuous stirred tank reactor control problem. It is shown that the requirements of the benchmark are met, and that the suggested iterated clustering significantly improves the performance. It is concluded that the finite state MDP approach is a viable alternative for small-to-medium scale problems of practical process control and state estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.