Abstract

Plasma polymerized methyl methaclylate (ppMMA) thin films were prepared with various process conditions such as inductively coupled plasma (ICP) power, substrate bias power, working pressure, substrate heating temperature, substrate position, and monomer flow rate. Thickness, surface morphology, dielectric constant, and leakage current of the ppMMA thin films were investigated for application to organic thin film transistor as gate dielectric. Deposition rate of over 8.6 nm/min, dielectric constant of 3.4, and leakage current density of 8.9 ×10-9 A/cm-2 at electric field of 1 MV/cm were achieved for the ppMMA thin film prepared at the optimized process condition: plasma power of RF 100 W; Ar flow rate of 20 sccm; working pressure of 5 mTorr; substrate temperature of 100 °C; substrate position of 100 mm. The ppMMA thin film was then applied to pentacene based organic thin film transistor (OTFT) device fabrication. The OTFT device with 80 nm thick pentacene semiconductor layer showed field effect mobility of 0.144 cm2 V-1 s-1 and threshold voltage of -1.72 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call