Abstract

Active composite structures based on thermoplastic matrix systems are highly suited to applications in lightweight structures ready for series production. The integration of additional functional components such as material-embedded piezoceramic actuators and sensors and an electronic network facilitates the targeted control and manipulation of structural behaviour. The current delay in the widespread application of such adaptive structures is primarily attributable to a lack of appropriate manufacturing technologies. It is against this backdrop that this paper contributes to the development of a novel manufacturing process chain characterized by robustness and efficiency and based on hot-pressing techniques tailored to specific materials and actuators. Special consideration is given to detailed process chain modelling and analysis focusing on interactions between technical and technological aspects. The development of a continuous process chain by means of the analysis of parameter influences is described. In conclusion, the use of parameter manipulation to successfully realize a unique manufacturing line designed for the high-volume production of adaptive thermoplastic composite structures is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.