Abstract

Shape memory alloys (SMAs) offer an attractive way to build adaptive structures as their shape changes and remembered their shape under the applied external stimuli. The adaptive composite structures embedded with SMA wires have been developed using the hand layup process. In this work, the experimental investigation of the actuation behaviour of the SMA-based adaptive composite structures was carried out. This is achieved by imposing external active and passive heating. To investigate the actuation behaviour of the SMA-based adaptive composite structure different diameters of SMA wires and their configurations were considered. Based on the trial experiments, a voltage of 6 V, a heating time of 5 s, and a cooling time of 18 s have been optimized for electrical heating. These heating conditions were used for all the thermomechanical analysis of SMA-based adaptive composite structures and all the samples were tested for multiple cycles of heating and cooling. The maximum deflection of 14 mm was observed for the composite structure embedded with four SMA wires of 0.5 mm diameter. Our fundamental study highlights the possibility of using SMA-based adaptive structures in electromechanical systems such as actuators and sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.