Abstract
In this work, we demonstrate tandem mass spectrometry on an ion trap storage-reflectron time-of-flight mass spectrometer (IT/reTOFMS). Ion isolation and activation were achieved by resonant excitation using multi- and single-frequency waveforms generated from an analog circuit. Product-ion spectra of small polypeptides are obtained, which are comparable in fragmentation to those acquired on sector or hybrid mass spectrometers. Several important parameters governing the tandem mass spectrometry process, including the activation tickle voltage, type of collision gas, activation period and cooling period after the fragmentation were optimized using leucine-enkephalin as a model. Although the limited energy deposition from collisional activation in our experiments does not allow efficient fragmentation of large singly charged polypeptides with m/z higher than 1000, the problem may be partially solved by taking advantage of fragmenting the multiply charged ions produced from the electrospray ionization source as demonstrated for a synthetic polypeptide of molecular weight 2782. Compared to the singly charged form, the reduced m/z of multiply charged forms experience a greater trapping force as described by the pseudopotential well-depth model. Increased pseudopotential well-depths for multiply charged species permit the use of greater fragmentation energy at lower RF potentials. These conditions facilitate the fragmentation of large polypeptides, yet are suitable for trapping singly charged fragments. These experiments indicate that the high efficiency associated with ion dissociation and fragment-ion collection in the trap and the storage capability for detection of ions using the non-scanning mode of the IT/ reTOF analyzer may provide an alternative means for acquiring sequence-specific information of polypeptides at low picomol levels of sensitivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have