Abstract

A seismic vulnerability procedure, based on the capacity/demand ratio approach, is applied to an irregular isolated bridge. Special features are incorporated in both, demand estimation and capacity evaluation. The seismic demand is represented by an average pseudo-acceleration spectrum derived from 159 earthquake accelerograms recorded in the region where the bridge is located. The capacity spectrum method is adopted for estimating the structural expected performance for several limit states. The capacity curve derived from a static non-linear procedure is obtained by means of a lateral load pattern that follows the displacement configuration, previously assessed by the use of time history analyses of the bridge supported on non-linear isolator bearings. Based on a moment–curvature analysis of the pier's sections, the maximum curvature ductility was established for each of the four defined performance limit states. Finally, probability density functions of the bridge capacity and demand were assessed and fragility curves were proposed aimed at determining the expected behaviour of the bridge as function of peak ground acceleration (PGA) of the typical strong motions recorded in the area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.