Abstract

Solutions to the problem of the flow of an ideal fluid past a blade or cascade of blades with low blocking factor are found in the framework of the first approximation of the theory of perturbations of the flow past infinitely thin arcs. Problems of correction of the shape of the blades are also considered. Problems associated with the application of perturbation theory in problems of flow past bodies are discussed in Van Dyke's monograph [1]. The present paper includes an example of realization of this theory for the thin curved blades that are widely used in compressor construction. Searches for effective methods for calculating the shape of blades to ensure necessary gas-dynamic properties, for example, a given distribution on the blades of the velocity of separationless flow, led to the appearance of algorithms based on the theory of small perturbations for a thin wing of finite span [2] and a single airfoil in a gas flow [3]. In such an approach, the problem of constructing the required profile can be formulated as a sequence of corrections of the boundary of the flow region with respect to small variations of the boundary values of the flow velocity. The paper contains a general formulation of the linear problem of the correction of the flow boundary, an algorithm for its solution in the case of thin blades in an incompressible flow, and analysis of the obtained solutions. Examples of calculations are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call