Abstract

The bezoutian matrix, which provides information concerning co-primeness and greatest common divisor of polynomials, has recently been generalized by Heinig to the case of square polynomial matrices. Some of the properties of the bezoutian for the scalar case then carry over directly. In particular, the central result of the paper is an extension of a factorization due to Barnett, which enables the bezoutian to be expressed in terms of a Kronecker matrix polynomial in an appropriate block companion matrix. The most important consequence of this result is a determination of the structure of the kernel of the bezoutian. Thus, the bezoutian is nonsingular if and only if the two polynomial matrices have no common eigenvalues (i.e., their determinants are relatively prime); otherwise, the dimension of the kernel is given in terms of the multiplicities of the common eigenvalues of the polynomial matrices. Finally, an explicit basis is developed for the kernel of the bezoutian, using the concept of Jordan chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.