Abstract

Published experience with eyes after keratorefractive correction of myopia indicates that insertion of the average keratometric readings into standard IOL power predictive formulas will frequently result in substantial undercorrection and postoperative hyperopic refraction or anisometropia after cataract surgery depending on the amount of myopia corrected previously. The purpose of this paper is to discuss the accentuated differences of various approaches to minimize IOL power miscalculations by describing a case report of a patient with excessive myopia as well as a review of the literature.A 50-year old lady presented for cataract surgery on her left eye after having PRK seven years ago elsewhere (refraction - 25.5 - 3.0/20 degrees, central keratometric power 43.0 diopters [D]). Central power before cataract extraction was measured to be 35.5 D (Zeiss Keratometer) and 36.5 D (TMS-1 topography analysis) and refraction was - 3.0 D (before onset of index myopia). Orbscan slit scanning topography analysis displayed an anterior surface power of 36.8 D and a posterior surface power of - 9.3 D. Total axial length was 31.93 mm (optical biometry using Zeiss IOL-Master). The contralateral eye after PRK suffering from a comparable excessive myopia had required an exchange of the IOL implant because of intolerable anisohyperopia of + 6.0 D after primary cataract extraction elsewhere.Corrected corneal power values for the left eye were calculated as follows: (1) spherical equivalent (SEQ) change at spectacle plane 19.0 D, (2) SEQ change at corneal plane 26.2 D, (3) separate consideration of anterior and posterior curvature 27.5 D, (4) consideration of the IOL power misprediction on the fellow eye 29.5 D, (5) subtraction of 24 % of the SEQ change at the spectacle plane from the actually measured keratometry value 29.7 D, (6) clinical estimate from regression analysis performed earlier 30.5 D, (7) change of anterior surface power 34.5 D. Deciding for a presumably "real" corneal power of 28.0 D the Haigis formula was used to aim for - 2.0 D since the patient preferred to read uncorrected. Thus, a 21.0 D IOL was implanted uneventfully in the capsular bag. The stable refraction postoperatively was - 3.5 - 1.0/20 degrees and visual acuity increased to 20/30. Therefore, the "real" power of that cornea must have been around 30 D.After corneal refractive surgery, various techniques to determine the current corneal power should be compared and the value around which results tend to cluster should be relied on to avoid hyperopia after cataract surgery with lens implantation. In those cases where keratometry and refraction before PRK/LASIK are available, the gold standard is still to subtract the change of the SEQ at the corneal plane from the preoperative central keratometric power, although in the present case report the subtraction of 24 % of the SEQ change at the spectacle plane from the measured corneal power value seemed to produce the best result. Pure subtraction of the SEQ change at the spectacle plane from the corneal power value before refractive surgery has to be avoided in eyes with excessive myopia. The most reliable corrected power value should be inserted in more than one modern third-generation formula (such as Haigis, Hoffer Q, Holladay 2, SRK/T) and the highest power IOL should be implanted. In all instances, the cataract surgeon has to make sure that the corrected K-reading is not wrongly re-converted within the IOL power calculation formula used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.