Abstract
ABSTRACT. Commonly‐employed spatial autocorrelation models imply heteroskedastic errors, but heteroskedasticity causes probit to be inconsistent. This paper proposes and illustrates the use of two categories of estimators for probit models with spatial autocorrelation. One category is based on the EM algorithm, and requires repeated application of a maximum‐likelihood estimator. The other category, which can be applied to models derived using the spatial expansion method, only requires weighted least squares.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.