Abstract

This study evaluated the antimicrobial activity, resistance development, and synergistic potential of cell-free supernatant (CFSs) derived from Levilactobacillus brevis (Lb-CFS) and Lactiplantibacillus plantarum (Lp-CFS) against Klebsiella pneumoniae. Both CFSs exhibited potent growth inhibition, with minimum inhibitory concentrations (MICs) of 128μg/mL and 64μg/mL for Lb-CFS and Lp-CFS, respectively, and demonstrated dose-dependent bactericidal activity, achieving complete bacterial eradication at minimum bactericidal concentrations (MBC) within 6h. The CFSs suppressed the expression of virulence genes (galF, wzi, and manC) and biofilm formation in a dose-dependent manner. Synergistic interactions were observed when combining CFSs with antibiotics, resulting in 2- to fourfold reductions in antibiotic MICs and MBCs. Notably, adaptive evolution experiments revealed significantly slower resistance development in K. pneumoniae against CFSs (twofold MIC/MBC increase) compared to antibiotics (16- to 128-fold increase) after 21days. Furthermore, CFS-adapted strains exhibited increased antibiotic susceptibility, while antibiotic-adapted strains displayed cross-resistance to multiple antibiotics. No cross-resistance occurred between Lb-CFS and Lp-CFS, suggesting distinct adaptive mechanisms. These findings highlight the potential of probiotic-derived CFSs as effective antimicrobials with a lower propensity for inducing rapid resistance compared to conventional antibiotics, suggesting their promise in combating multidrug-resistant infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.