Abstract

EVOH's excellent gas barrier properties have enabled its continued market growth in numerous applications including food packaging, fuel tanks, and construction. However, EVOH's susceptibility to thermo-oxidation limits its ability to be reprocessed. While it is generally known that EVOH degradation leads to cross-linking, detailed degradation rates and mechanisms are not well established. Understanding EVOH degradation has been elusive because readily accessible thermal and spectroscopy methods do not reveal significant changes. Moreover, gel permeation chromatography requires specialized solvents and columns. We report that measuring changes in viscoelasticity with time-resolved rheology (TRR) is a facile way to monitor the temporal dynamics of EVOH degradation. TRR was performed on EVOH grades with ethylene copolymer contents of 27, 32, 48 mol%. As expected, the grade with the highest ethylene content was the most stable. However, with time, all the EVOH grades transitioned from a Carreau-like fluid to a power law fluid and no longer exhibited terminal behavior. Cole-Cole plots also revealed that EVOH relaxation evolved from rapid process into a long, complex process consistent with network formation. The mechanism of degradation was further elucidated by using 13C distortionless enhancement of polarization transfer (DEPT-135) nuclear magnetic resonance spectroscopy. These results showed that degradation occurred by ring-opening of lactone terminal groups that led to cross-linking. This enhanced understanding provides a foundation for developing methods to probe and mitigate EVOH degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.