Abstract
Although most peptide bonds in proteins exist in the trans configuration, when cis peptide bonds do occur, they can have major impact on protein structure and function. The rapid identification of cis peptide bonds is therefore an important task. Peptide bonds containing proline are more likely to adopt the cis configuration because the ring connecting the side chain and backbone in proline flattens the energetic landscape relative to amino acids with free side chains. Examples of cis proline isomers have been identified in both solution and in the gas phase by a variety of structure-probing methods. Mass spectrometry is an attractive potential method for identifying cis proline due to its speed and sensitivity; however, the question remains of whether cis/trans proline isomers originating in solution are preserved during ionization and manipulation within a mass spectrometer. Herein, we investigate the gas-phase stability of isolated solution-phase cis and trans proline isomers using a synthetic peptide sequence with a Tyr-Pro-Pro motif. A variety of dissociation methods were explored to evaluate their potential to distinguish cis/trans configuration, including collision-induced dissociation, radical-directed dissociation, and photodissociation. Only photodissociation employed in conjunction with extremely gentle electrospray and charge solvation by 18-crown-6 ether was able to distinguish cis/trans isomers for our model peptide, suggesting that any thermal activation during transfer or while in the gas phase leads to isomer scrambling. Furthermore, the necessity for 18-crown-6 suggests that intramolecular charge solvation taking place during electrospray ionization can override cis/trans isomer homogeneity. Overall, the results suggest that solution-phase cis/trans proline isomers are fragile and easily lost during electrospray, requiring careful selection of instrument parameters and consideration of charge solvation to prevent cis/trans scrambling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have