Abstract

In this study, we investigate the spin-momentum locking phenomenon on Rashba states of antimony (Sb) films. Utilizing spin pumping in conjunction with an external charge current, we uncover the topological properties of Sb surface states. Our key finding is the precise manipulation of the direction and magnitude of the charge current generated by the inverse Rashba-Edelstein effect. This control is achieved through the dynamic interaction between out-of-equilibrium pumped spins and spin-momentum-locked flowing spins, which are perpendicular to the charge current. Our results highlight Sb as a promising material for both fundamental and applied spintronics research. The studied Sb nanostructures demonstrate potential for the development of low-power logic gates operating with currents in the microampere range, paving the way for advanced spintronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.