Abstract

The N-quaternized derivative 5 of the James-Shinkai anthracene-boronic acid fluorescence sugar sensor 1 was prepared to probe the role of the bridging nitrogen in the signaling mechanism of 1. Both 5 and 1 contain positively charged bridging groups NMe+ or NH+, respectively, but 5 lacks the ability to form the intramolecular ammonium-boronate doubly ionic hydrogen bond present in 1. Receptors 1 and 5 display opposite fluorescence vs pH profiles with a small turn-on effect of the sugar binding to the zwitterion of 5 in contrast to a large effect observed with 1. It is concluded that the ammonium-boronate hydrogen bond is essential for the signaling mechanism of 1. Its possible function is enabling the PET quenching effect by shifting the NH+ proton toward boronate anion inside the hydrogen bond, the degree of which is modulated by the ester formation with diols affecting the basicity of boronate anion. This mechanism agrees with observed signaling selectivity of 1 toward a series of di- and polyols of variable structures as well as with the behavior of 1 in buffered D2O and methanol solvents at controlled pH and provides an addition to the established "loose bolt" mechanism signaling mode essential for receptors with nonpolar fluorophores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.