Abstract

Spectroscopies utilizing free electron beams as probes offer detailed information on the reciprocal-space excitations of 2D materials such as graphene and transition metal dichalcogenide monolayers. Yet, despite the attention paid to such quantum materials, less consideration has been given to the electron-beam characterization of 2D periodic nanostructures such as photonic crystals, metasurfaces, and plasmon arrays, which can exhibit the same lattice and excitation symmetries as their atomic analogues albeit at drastically different length, momentum, and energy scales. Because of their lack of covalent bonding and influence of retarded electromagnetic interactions, important physical distinctions arise that complicate interpretation of scattering signals. Here we present a fully-retarded theoretical framework for describing the inelastic scattering of wide-field electron beams from 2D materials and apply it to investigate the complementarity in sample excitation information gained in the measurement of a honeycomb plasmon array versus angle-resolved optical spectroscopy in comparison to single monolayer graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.