Abstract

The selective hydrogenation of cinnamaldehyde (CAL) is an extremely important transformation. Herein, oxygen functionalized carbon nanotubes (oCNTs) supported a series of PtxCoy bimetallic nanoparticles (NPs) with varied Pt to Co ratios were synthesized. The introduction of Co significantly affects the electronic structure of Pt NPs, which clearly promotes the selectivity to cinnamyl alcohol (COL). Among all PtxCoy-oCNTs catalysts, PtCo3-oCNTs exhibited the best catalytic performance and a selectivity of over 76% towards COL at a CAL conversion of 99% was obtained. Further characterization of the fresh, used and cycled catalysts revealed that the NP structures were stable and did no change. The structural evolutions during the catalytic reaction were also investigated by identical location transmission electron microscopy (IL-TEM) method in detail, which found that the deactivation of PtCo3-oCNTs catalyst during the cycle experiment results from the agglomeration and detachment of PtCo3 NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.