Abstract

We investigate periodical oscillations in the conductance of suspended Au and Pt atomic chains during elongation under mechanical stress. Analysis of conductance and shot noise measurements reveals that the oscillations are mainly related to variations in a specific conduction channel as the chain undergoes transitions between zigzag and linear atomic configurations. The calculated local electronic structure shows that the oscillations originate from varying degrees of hybridization between the atomic orbitals along the chain as a function of the zigzag angle. These variations are highly dependent on the directionally and symmetry of the relevant orbitals, in agreement with the order-of-magnitude difference between the Pt and Au oscillation amplitudes observed in experiment. Our results demonstrate that the sensitivity of conductance to structural variations can be controlled by designing atomic-scale conductors in view of the directional interactions between atomic orbitals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.