Abstract
A method for the investigation of the influence of protecting groups on the anomeric equilibrium in the sialic acid glycosides has been developed on the basis of the equilibration of O-sialyl hydroxylamines by reversible homolytic scission of the glycosidic bond following the dictates of the Fischer–Ingold persistent radical effect. It is found that a trans-fused 4O,5N-oxazolidinone group stabilizes the equatorial glycoside, i.e., reduces the anomeric effect, when compared to the 4O,5N-diacetyl protected systems. This effect is discussed in terms of the powerful electron-withdrawing nature of the oxazolidinone system, which in turn is a function of its strong dipole moment in the mean plane of the pyranose ring system. The new equilibration method displays a small solvent effect and is most pronounced in less polar media consistent with the anomeric effect in general. The unusual (for anomeric radicals) poor kinetic selectivity of anomeric sialyl radicals is discussed in terms of the planar π-type structure of these radicals and of competing 1,3-diaxial interactions in the diastereomeric transition states for trapping on the α- and β-faces of the radical.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have