Abstract

HypothesisBoth hydroxamate and dithiocarbamate groups exhibit a unique bonding characteristic toward rare earth ions. A hydroxamic acid surfactant containing a dithiocarbamate group should possess a specific affinity to hydrophobize bastnaesite [(Ce, La)CO3F] flotation. ExperimentsN-[(3-hydroxyamino)-propoxy]-N-octyl dithiocarbamate (OAHD) was synthesized, and its flotation mechanism toward bastnaesite was investigated by in situ AFM, FTIR, XPS, micro-flotation and contact angle. FindingsIn situ AFM clearly observed that OAHD aggregated on bastnaesite surface, which improved the contact angle and surface hydrophobicity of bastnaesite. FTIR spectra and XPS recommended that OAHD’s dithiocarbamate and hydroxamate groups co-anchored on bastnaesite surface through strong chemisorption, which strengthened the bonding affinity of bastnaesite toward OAHD. UV spectra showed that both dithiocarbamate and hydroxamate groups exhibited weak affinity toward Ca2+ ions, which benefited OAHD’s selective flotation separation of bastnaesite from calcite. The co-adsorption and special hydrophobic structure improved OAHD’s flotation performance. As a result, OAHD returned higher flotation selectivity for bastnaesite than OHA (n-octyl hydroxamic acid) which chemisorbed on bastnaesite surface only through the hydroxamate group and used the heptyl as hydrophobic group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.