Abstract

In the Standard Model, all massive elementary particles acquire their masses by coupling to a background Higgs field with a non-zero vacuum expectation value. What is often overlooked is that each massive particle is also a source of the Higgs field. A given particle can in principle shift the mass of a neighboring particle. The mass shift effect goes beyond the usual perturbative Feynman diagram calculations which implicitly assume that the mass of each particle is rigidly fixed. Local mass shifts offer a unique handle on Higgs physics since they do not require the production of on-shell Higgs bosons. We provide theoretical estimates showing that the mass shift effect can be large and measurable, especially near pair threshold, at both the Tevatron and the LHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.