Abstract

Ribosomes play an active role in protein biosynthesis. Ribosomal RNA conformation in ribosomal subunits, intramolecular interactions between different rRNA sequences within the confinement of the particles, and intermolecular interactions are presumed necessary to support efficient and accurate protein synthesis. Here we report an analysis of the disposition of 16S rRNA conserved zones centered about positions 525, 1400, and 1500 in 30S subunits. Complementary oligodeoxyribonucleotides in conjunction with nuclease S1 digestion were used to do this. All of the sequences examined in 30S subunits are accessible to DNA probes of 9 to 12 nucleotide residues in length. However, the kinetic characteristics of the respective DNA interactions with 30S particles vary significantly. In addition to the investigation of normal 30S particles, a four base deletion within the 1400 region of 16S rRNA was analyzed. The deletion was made by using synthetic DNAs to target the deletion site for RNase H digestion. The direct in vitro procedure for manipulating rRNA conserves nucleotide modifications. The alteration causes a significant change in the disposition of 16S rRNA in 30S subunits, suggesting a reduction in the freedom of movement of the altered zone in the particle. In a factor-dependent in vitro protein synthesis system primed with MS2 mRNA and altered 30S subunits, there was a 50% decrease in phage coat protein synthesis. The reduction could be due to a decrease in the rate of translation or premature termination of translation. We present evidence here, based on isotopic studies, which supports the latter possibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.