Abstract

Although helioseismology has been used as an effective tool for studying the physical mechanisms acting in most of the solar interior, the microscopic and dynamics of the deep core is still not well understood. Helioseismological anomalies may be partially resolved if the Sun captures light, non-annihilating dark matter particles, a currently discussed dark matter candidate that is motivated by recent direct detection limits. Once trapped, such particles (4-10 GeV) naturally fill the solar core. With the use of a well-defined stellar evolution code that takes into account an accurate description of the capture of dark matter particles by the Sun, we investigate the impact of such particles in its inner core. Even a relatively small amount of dark matter particles in the solar core will leave an imprint on the absolute frequency values of gravity modes, as well as the equidistant spacing between modes of the same degree. The period separation for gravity modes could reveal changes of up to 3% for annihilating dark matter and of up to 20% for non-annihilating dark matter. This effect is most pronounced in the case of the gravity dipole (l=1) modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call