Abstract

Uranium oxide clusters UOx(-) (x = 3-5) were produced by laser vaporization and characterized by photoelectron spectroscopy and quantum theory. Photoelectron spectra were obtained for UOx(-) at various photon energies with well-resolved detachment transitions and vibrational resolution for x = 3 and 4. The electron affinities of UOx were measured as 1.12, 3.60, and 4.02 eV for x = 3, 4, and 5, respectively. The geometric and electronic structures of both the anions and the corresponding neutrals were investigated by quasi-relativistic electron-correlation quantum theory to interpret the photoelectron spectra and to provide insight into their chemical bonding. For UOx clusters with x ≤ 3, the O atoms appear as divalent closed-shell anions around the U atom, which is in various oxidation states from U(II)(fds)(4) in UO to U(VI)(fds)(0) in UO3. For x > 3, there are no longer sufficient valence electrons from the U atom to fill the O(2p) shell, resulting in fractionally charged and multicenter delocalized valence states for the O ligands as well as η(1)- or η(2)-bonded O2 units, with unusual spin couplings and complicated electron correlations in the unfilled poly oxo shell. The present work expands our understanding of both the bonding capacities of actinide elements with extended spdf valence shells as well as the multitude of oxygen's charge and bonding states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call