Abstract

High power impulse magnetron sputtering (HiPIMS) is a versatile technology to deposit thin films with superior properties. During HiPIMS, the power is applied in short pulses of the order of 100 μs at power densities of kW to a magnetron target creating a torus shaped dynamic high density plasma. This plasma torus is not homogeneous, but individual ionization zones become visible, which rotate along the torus with velocities of 10 km . Up to now, however, any direct measurement of the electron density inside these rotating ionization zones is missing. Here, we probe the electron density by measuring the target current locally by using small inserts embedded in an aluminium target facing the plasma torus. By applying simple sheath theory, a plasma density of the order of at the sheath edge can be inferred. The plasma density increases with increasing target current. In addition, the dynamics of the local target current variation is consistent with the dynamics of the traveling ionization zone causing a modulation of the local current density by 25%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call