Abstract
The formation of oxygen-related lattice defects and their influence on optical and electronic properties in CaCu3Ti4O12 (CCTO) ceramics were studied by controlling the oxygen partial pressure during the sintering process at high temperatures. The samples were analyzed using complementary bulk spectroscopic techniques such as photoluminescence spectroscopy, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, and electron paramagnetic resonance. Our comprehensive study shows that the oxygen content during sintering process exerts considerable control over the type and concentration of oxygen-related defects in the crystalline CCTO structure. Our results also suggest that the formation of different types of oxygen-related defects in the structure modifies electronic energy levels and thus directly affects the electronic and optical properties of the CCTO phase. These results provided further insight into the important role of oxygen in the crystalline defect arrangement in polycrystalline CCTO ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.