Abstract

Investigation of antiviral and cytotoxic effect of quercetin 3-glucoside (Q3G) from Dianthus superbus L over influenza virus infection and replication were studied. Moreover, anti-influenza mechanism was screened by time-dependent antiviral assay, virus-induced symptoms and related gene expressions. The blockade of cap-binding domain of polymerase basic protein subunit were analysed by molecular docking study. The Q3G demonstrated potent antiviral activity showing 4.93, 6.43, 9.94, 8.3, and 7.1 μg/mL of IC50 for A/PR/8/34, A/Victoria/3/75, A/WS/33, B/Maryland/1/59, and B/Lee/40, respectively. The cellular toxicity of Q3G and oseltamivir (control) were tested and >100 μg/mL of CC50 value considered as nontoxic. Influenza A virus infection induced a higher ROS production, however potentially reduced by Q3G treatment and significantly blocked virus infection induced acidic vesicular organelles (AVO). Moreover, Q3G has no inhibitory effect for neuraminidase activity but blocked virus replication through time dependent assay and showed more competitive binding affinity (−8.0 kcal/mal) than GTP (−7.0 kcal/mol) to block polymerase basic protein-2 subunit of influenza virus. Q3G from D. superbus showed potent antiviral activity against influenza A and B viruses with suppressive effect on virus-induced cellular ROS generation and AVO formation. Thus, this study provided a new line of research for Q3G to develop possible natural anti-influenza drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call