Abstract

We present radial mass profiles within ~0.3rvir for 16 relaxed galaxy groups—poor clusters (kT range 1-3 keV) selected for optimal mass constraints from the Chandra and XMM-Newton data archives. After accounting for the mass of hot gas, the resulting mass profiles are described well by a two-component model consisting of dark matter, represented by an NFW model, and stars from the central galaxy. The stellar component is required only for eight systems, for which reasonable stellar mass-to-light ratios (M/LK) are obtained, assuming a Kroupa IMF. Modifying the NFW dark matter halo by adiabatic contraction does not improve the fit and yields systematically lower M/LK. In contrast to previous results for massive clusters, we find that the NFW concentration parameter (cvir) for groups decreases with increasing Mvir and is inconsistent with no variation at the 3 σ level. The normalization and slope of the cvir-Mvir relation are consistent with the standard ΛCDM cosmological model with σ8 = 0.9 (considering a 10% bias for early forming systems). The small intrinsic scatter measured about the cvir-Mvir relation implies that the groups represent preferentially relaxed, early forming systems. The mean gas fraction (f = 0.05 ± 0.01) of the groups measured within an overdensity Δ = 2500 is lower than for hot, massive clusters, but the fractional scatter (σf/f = 0.2) for groups is larger, implying a greater impact of feedback processes on groups, as expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.