Abstract

Protein folding is governed by a balance of non-covalent interactions, of which cation-π and π-π play important roles. Theoretical calculations revealed a strong cooperativity between cation-π involving alkali and alkaline earth metal ions and π-π interactions, but however, no experimental evidence was provided in this regard. Here, we characterized a Ca(2+)-binding self-processing module (SPM), which mediates a highly-specific Ca(2+)-dependent autocatalytic processing of iron-regulated protein FrpC secreted by the pathogenic Gram-negative bacterium Neisseria meningitidis. The SPM undergoes a Ca(2+)-induced transition from an intrinsically unstructured conformation to the compact protein fold that is ultimately stabilized by the π-π interaction between two unique tryptophan residues arranged in the T-shaped orientation. Moreover, the pair of tryptophans is located in a close vicinity of a calcium-binding site, suggesting the involvement of a Ca(2+)-assisted π-π interaction in the stabilization of the tertiary structure of the SPM. This makes the SPM an excellent model for the investigation of the Ca(2+)-assisted π-π interaction during Ca(2+)-induced protein folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.