Abstract

Peptides represent an increasingly important class of pharmaceutical products. During the last decade or so, acylation with fatty acids has demonstrated considerable success in prolonging the circulating half-life of therapeutic peptides by exploiting the ability of fatty acids to reversibly bind to human serum albumin (HSA), thus significantly impacting their pharmacological profiles. Employing methyl-13C-labeled oleic acid or palmitic acid as probe molecules and exploiting HSA mutants designed to probe fatty acid binding, the signals in two-dimensional (2D) nuclear magnetic resonance (NMR) spectra corresponding to high-affinity fatty acid binding sites in HSA were assigned. Subsequently, using a set of selected acylated peptides, competitive displacement experiments by 2D NMR identified a primary fatty acid binding site in HSA utilized in acylated peptide binding. These results represent an important first step toward understanding the structural basis for acylated peptides binding to HSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.