Abstract

The Weyl particle is the massless fermionic cousin of the photon. While no fundamental Weyl particles have been identified, they arise in condensed matter and meta-material systems, where their spinor nature imposes topological constraints on low-energy dispersion and surface properties. Here we demonstrate a topological circuit with Weyl dispersion at low-momentum, realizing a 3D lattice that behaves as a half-flux Hofstadter model in all principal planes. The circuit platform provides access to the complete complex-valued spin-texture of all bulk- and surface- states, thereby revealing not only the presence of Weyl points and the Fermi arcs that connect their surface-projections, but also, for the first time, the Berry curvature distribution through the Brillouin zone and the associated quantized Chiral charge of the Weyl points. This work opens a path to exploration of interacting Weyl physics in superconducting circuits, as well as studies of how manifold topology impacts band topology in three dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.