Abstract

Microplastics (MPs) are becoming one class of pollutants with high global concerns. Information regarding aging behaviors of MPs in complicated natural conditions is still lacking due to the very slow aging processes. In this study, discharge plasma oxidation was applied to simulate the various radical oxidation and physical effects naturally occurring in the environment to shed light on the aging behaviors and mechanisms of MPs, with polyvinyl chloride microplastic (PVC-MP) as a model. The surface morphology, particle size, specific surface area, crystallinity, and chemical compositions of PVC-MP were comprehensively characterized as a result of aging. The aging degree indicated by carbonyl index and oxygen-to-carbon ratio increased with the plasma oxidation intensity and duration. The aged PVC-MP was characterized as more O-containing functional groups, smaller particle size, larger specific surface area, higher hydrophilicity, and higher crystallinity. Consequently, the aged PVC-MP provided more sites for adsorption of tetrabromobisphenol (TBBPA) in solutions by forming hydrogen-bonds, and electrostatic force. The changes in the properties of the aged PVC-MP, and the strong adsorption with TBBPA led to unexpected synergistic toxic effects to Scenedesmus obliquus. The results provide direct evidences of aging processes of MPs and the potential environmental risks due to aging in the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.