Abstract

The complex and specialised diagnostic process through magnetic resonance imaging (MRI) could be simplified with the implementation of dual T1-T2 contrast agents. T1- and T2-weighted MR are compatible modalities, and co-acquisition of contrast enhanced images in both T1 and T2 will drastically reduce artefacts and provide double-checked results. To date, efforts in the development of dual MRI probes have provided inconsistent results. Here we present the preparation and relaxometric study of a dual T1-T2 MRI probe based on superparamagnetic nanoparticles, paramagnetic Gd3+ chelates and pNIPAM (poly(N-isopropylacrylamide)), in which the distance between paramagnetic and superparamagnetic species can be modulated externally via temperature variations. Such a probe alleviates traditional nanotechnology limitations (e.g. batch to batch variability) as comparisons can be established within a single probe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.