Abstract
The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After spin-dependent transmission through the ferromagnetic base they are collected in the conduction band of the semiconductor provided they have the right energy and momentum to overcome the Schottky barrier. Two factors determine the spin-sensitivity of the device: (i) spin-dependent tunneling from the emitter, and (ii) spin-dependent scattering of the hot electrons in the base. Since the magnetocurrent (MC) depends on the tunneling spin polarization, the MTT can be used to study the spin-polarization of ferromagnetic/insulator interfaces at high bias voltage. Moreover, the temperature dependence can be studied using a newly introduced lithographically defined MTT that allows us to probe the tunnel spin-polarization up to room temperature, removing a limitation of the standard technique of tunneling into a superconductor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.