Abstract

In porous intercalation electrodes, coupled charge and species transport interactions take place at the pore-scale, while often observations are made at the electrode-scale. The physical manifestation of these interactions from pore- to electrode-scale is poorly understood. Moreover, the spatial arrangement of the constituent material phases forming a porous electrode significantly affects the multi-modal electrochemical and transport interplay. In this study, the relation between the electrode specification, resultant porous microstructure, and electrode-scale resistances is delineated based on a virtual deconvolution of the impedance response. Relevant short- and long-range interactions are identified. Without altering the microstructural arrangement, if the electrode thickness is increased, the resistances do not scale linearly with thickness. This dependence is also probed to identify the fundamental origins of thick electrode limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.