Abstract

AbstractThe templating approach is a powerful method for preparing porous electrodes with interconnected well‐controlled pore sizes and morphologies. The optimization of the pore architecture design facilitates electrolyte penetration and provides a rapid diffusion path for lithium ions, which becomes even more crucial for thick porous electrodes. Here, NaCl microsize particles are used as a templating agent for the fabrication of 1 mm thick porous LiFePO4 and Li4Ti5O12 composite electrodes using spark plasma sintering technique. These sintered binder‐free electrodes are self‐supported and present a large porosity (40%) with relatively uniform pores. The electrochemical performances of half and full batteries reveal a remarkable specific areal capacity (20 mA h cm−2), which is 4 times higher than those of 100 µm thick electrodes present in conventional tape‐casted Li–ion batteries (5 mA h cm−2). The 3D morphological study is carried out using full field transmission X‐ray microscopy in microcomputed tomography mode to obtain tortuosity values and pore size distributions leading to a strong correlation with their electrochemical properties. These results also demonstrate that the coupling between the salt templating method and the spark plasma sintering technique turns out to be a promising way to fabricate thick electrodes with high energy density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.