Abstract

We theoretically study inelastic collisions between NO radicals and He atoms at low collision energies, focusing on the occurrence of scattering resonances. We specifically investigate de-excitation of rotationally excited NO radicals (X (2)Π1/2, v = 0, j = 3/2, f) at collision energies ranging from 10(-3) to 20 cm(-1) and compute integral and differential cross sections using quantum mechanical close-coupling calculations. Although unconventional, we show that the measurement of rotational de-excitation cross sections brings several advantages to experiments that aim to study rotational energy transfer at temperatures approaching zero kelvin. We analyze the nature and partial wave composition of the quasi-bound states associated with each individual resonance and compute the scattering wave functions. The differential cross sections contain the partial wave fingerprints of the scattering process and are found to change drastically as the collision energy is varied over the resonances. The prospects for measuring these differential cross sections in inelastic de-excitation collisions at low energies are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.