Abstract

Low-lying rotationless states of the lithium hydride molecule are studied in the framework of the variational method without assuming the Born-Oppenheimer (BO) approximation. Highly accurate solutions to the six-particle (two nuclei and four electrons) Schrödinger equation are obtained by means of expanding the wave functions of the considered states in terms of many thousands of all-particle explicitly correlated Gausssians. The basis functions are optimized independently for each state using the analytic energy gradient with respect to the nonlinear parameters. The non-BO wave functions obtained in the calculations are used to evaluate the leading-order relativistic and quantum electrodynamics energy corrections in the framework of the perturbation theory. The geometric structure of the molecule in the ground and excited states is discussed based on the analysis of the nucleus-nucleus correlation functions. The non-BO energies and structural parameters obtained of this work are compared with the most accurate BO results currently available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.