Abstract
Protein aggregation is the cause of many, often lethal, diseases, including the Alzheimer's, Parkinson's, and Huntington's diseases, and familial amyloidosis. Theoretical investigation of the mechanism of this process, including the structures of the oligomeric intermediates which are the most toxic, is difficult because of long time scale of aggregation. Coarse-grained models, which enable us to extend the simulation time scale by three or more orders of magnitude, are, therefore, of great advantage in such studies. In this chapter, we describe the application of the physics-based UNited RESidue (UNRES) force field developed in our laboratory to study protein aggregation, in both free simulations and simulations of aggregation propagation from an existing template (seed), and illustrate it with the examples of Aβ-peptide aggregation and Aβ-peptide-assisted aggregation of the peptides derived from the repeat domains of tau (TauRD).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have